
Lina Engine Final Report

IZMIR UNIVERSITY OF ECONOMICS

FACULTY OF ENGINEERING

SOFTWARE ENGINEERING

FENG 497(498) PROJECT REPORT

LINA ENGINE

Author(s): İnan Evin - Bekir Batuhan Bakır

Supervisor: Kaya Oğuz

1

Lina Engine Final Report

Abstract 3

1. Introduction 4

1.1 Problem Statement 5

1.2 Motivation 6

2. Literature Review 6

2.1 The Case for Research in Game Engine Architecture 7

2.2 Evolution and Evaluation of the Model-View-Controller Architecture in Games 9

2.3 An Object-Oriented Graphics Engine 11

2.4 The Entity System Architecture and Its Application in an Undergraduate Game Development
Studio 12

2.5 Designing a PC Game Engine 14

2.6 Distributed Scene Graph to Enable Thousands of Interacting Users in a Virtual Environment 16

3. Methodology 18

3.1 Problem Extraction 18

3.2 Narrowing Issues 19

3.3 Designing the Architecture 20

3.4 Technical Details 22

3.4.1 Static and Dynamic Library 23

3.4.2 Vendor Compilation 24

3.4.3 Build System - CMake 25

3.4.4 Lina Build Launcher 25

3.4.5 C++ 17 Features 26

3.4.6 Static Polymorphism in Core Engines 27

4. Results and Discussion 28

4.1 Design Changes 28

4.1.1 Message Bus 28

4.1.2 Package Manager Adapters 29

4.2 Important Findings 30

4.2 ECS Comparison 31

5. Conclusions 32

6. References 33

2

Lina Engine Final Report

Abstract

The project covers an extensive research on the architectural design of game engines, followed by

design and implementation of a game engine, that offers alternative solutions to deficits

commonly existing in open source and commercial game engines. The research is motivated by

the substantial needs and requirements of the game development community. In the existing

market there are state-of-the-art game engines to provide solutions, however they are mostly

business-driven with a motive for focusing on the larger audience. This results in heavy

structures, forcing the developers using them to include enormous amounts of undesired features

and frameworks that are capable of providing many functionalities that most developers do not

need in their particular projects in the first place.

Our method of choice is an implementation of an open source game engine, based on the

architecture we have designed. By developing an engine that has trivial features to develop a

game and demonstrates our proposed architectural solutions, we can establish a basis for the

game development community to work upon in order to extend those solutions. We based our

methods on an extensive research about available engine sources and design flaws in the

architectures of those engines. Implementation of a design that is based on this research and its

findings, means that there would be a solid work of an open source engine, that is coupled with

its low level dependencies, as weakly as possible, resulting in a highly lightweight architecture

that most of the engines in the market lack. As a result, it would open new possibilities in the

game community such that the other developers would be encouraged to expand the architecture

in order to achieve better engine systems, thus benefiting the whole game community.

1. Introduction

Game engines have been a topic of interest since id Software released DOOM Engine, as the core

technology behind their remarkable and landmark franchise DOOM became popular around

1990’s. Since then, the realization of the need for a framework to develop games became popular

and has been in the radar of many interested game and technology development companies. The

idea and genesis of the concept “game engine” was to provide a technology framework in

3

Lina Engine Final Report

abstract and polymorphic manner for games development, such that the time, money and effort

required for releasing new titles would decrease dramatically, mainly based on the reusability of

said technologies. They provided simple libraries and their integration into larger frameworks, to

solve problems caused by hard-coded and pre-arranged data in the design, initiation and

development process of a game. As the requirements inside a particular game idea got larger, as

well as the possibility and the variance of the games that can be targeted, the need for bigger,

faster and better engines arised quickly. Especially after 2000’s, the release of engines like; id

Tech, iw Engine, OGRE, Torque3D and Anvil, has boosted and shaped the market in drastic

ways. After 2000’s, studios were not only interested in advancing their technologies for their own

titles, but they were also keen on developing engines to be sold to other game development

stakeholders and parties, which in turn lead to many engines being developed for open

community, with various commercial & personal licenses available, thus opening a new era in the

means of game development. Nowadays in the game development market, many engines that are

capable of providing AAA features are available to open community and independent developers.

Engines such as Unreal Engine, Godot, Cocos and Unity can be counted as the largest examples.

As we call them modern engines, these softwares deliver highly flexible features to enable any

interested individual to prototype and develop any type of game they want in easy, cheap and

efficient way. However, these flexibilities provided by this type of modern engines also bring

problems along the way in the means of game development. We can refer to the biggest one of

these problems, as the fact that the development process got too easy, and the architectures

behind them got unstable.

In order to provide ease of use, flexibility, modularity and capability of AAA development,

modern engines available to the community had to rearrange their structures in a more openly

manner. They had to think about many possible scenarios that a developer would be in, and

provide functionality for every single one of them to support wide usage. This idea has brought

many structural deficits for those engines as well as implementation problems. It resulted in an

iterative process of game engine development where they patch and cover the fundamental errors

from the community and keep implementing more features, rather than fixing the current

problems. Many of these fundamental problems can be narrowed down into one title: lack of

simplicity and lightness. In order to feed the community with the idea of ability to do everything

4

Lina Engine Final Report

easily, these engines had to include many built-in libraries and frameworks into their core

structure as well as many Application Programming Interfaces (API) to provide communication

between high-level and low-level game code. As a result, they enforce such structures to the users

that even though it is easy to use and quick to prototype small ideas, as the complexity of the

game increases, it gets harder to maintain the systems and architecture inside the game, along

with the increased drop in efficiency. Since these engines have high influence on the market, most

of what seems to be a new method of engine development, ends up being similar to ones on the

market. The resulting phenomenon of engine architecture, along with the development of careless

third-party plugins for those architectures, has been a huge problem for teams who aim to develop

titles of high complexity and still want to benefit from a power of a game engine which is open to

community.

1.1 Problem Statement

The problem we focus on is the need for an open source engine, that is trivial to use and

dedicated to help solving those issues and design flaws existing in modern game engines. The

game development community is bound to use the existing modern game engines because there

does not exist many alternatives rather than the ones competing in the market. Even though these

engines are well written high level frameworks, their flaws and design issues bring frustration to

most developers and this affects especially the independent game development communities. To

overcome this, many developers work on projects that are tools, plugins and extensions to these

engines. Even some work on developing their own game engines, but most of the projects do not

continue due to complication of the subject. The community is in need for an example work of a

game engine that presents an architecture which does not include the deficits existing in modern

engines, so that developers can influence and base their work upon.

1.2 Motivation

The research for generating new techniques for an alternative game engine architecture has the

potential to influence the game development community. With this influence, developers can

contribute more into the open source engine development and open the gates for possible new

technologies and methods to be used in game engine architecture. By compromising the “an

5

Lina Engine Final Report

engine for everything” motto, it is possible to extract and eliminate core problems existing in

those highly favored engines. Problems such as slow and heavy communication interfaces,

enforcement of unmaintainable code architecture due to poor scripting front-end, weakly

designed event & messaging systems, entity systems that tend to create code redundancy and

duplication can be counted as the most noticeable ones that are seen in the common architectures.

It is possible to establish a layout that avoids these problems by using system models that are

compatible with each other and consistent in architecture, rather than trying to mix every

different types of models into one huge engine to provide vast functionality, which can be seen as

one of the biggest mistakes that consumer hungry engines tend to do.

The findings and implementation of this research might influence and encourage many

developers to interact with these creative techniques and methods of engine development. The

collaboration may produce a community of developers who are able to develop their games with

these unique methods of implementation and modular systems to extend the powers of the engine

by only using what they really need in their game, thus decreasing the compromise of the

efficiency. Such an efficient engine architecture might shape the game development

communities’ view on the sources for developing real-time applications, thus creating a chance to

open the doors for more open source and community driven engines and technologies to develop

games, without being forced to stick to the boundaries of those provided by business driven leads.

2. Literature Review

Lina Engine adapts good number of principles, designs and ideas, extracted from various

academic researches, which have been used by industry developers and academic personnel for

research purposes extensively. It is important to point out the main sources that has inspired

various designs in Lina Engine, so that we can construct a basis of strong arguments behind the

methodologies used in the design of our engine. Due to the significance of concretely pointing the

academic sources, this paper is written in a format to mention those sources, analyze and extract

the main ideas of them. So that we can specify which parts of those sources inspires Lina Engine,

what are the similarities and differences in the techniques discussed and used, along with any

comparison traits if viable. Hence, we can form a group of reasoning that we can present as an

6

Lina Engine Final Report

argument to support the design choices made throughout the Lina Engine’s development

lifecycle. This paper’s purpose is to give information about these academic materials in question

in the means of a review, extract their main ideas along with significant points, put these ideas

with the choices made in Lina Engine side by side, to compare them in differences, extensions or

similarities, in order to form the basic arguments behind our design. This paper follows a

sequential format, in which each research and source is mentioned and review first, then their

relationship with Lina Engine is explained.

2.1 The Case for Research in Game Engine Architecture

Anderson, Engel, Comninos and McLoughlin (2008) suggest in their research that there exists

four significant questions that should be asked while designing a game engine. These questions

are; “Where is the boundary between game and game engine?”, “How do different genres affect

the design of a game engine?”, “How do low-level issues affect top-level design?” and lastly

“Are there any specific design methods or architectural models that are used, or should be used,

for the creation of a game engine?”. Anderson et al. (2008) states that a general answer for the

first question can be the design border in the engine’s architecture in where the integration of

components that do not specify game’s logic or its environment can be drawn. Even though the

general example is too abstract and is not satisfying in the means of concreteness, it is also the

best case answer that we can give for the definition of a game engine. This is due to the fact that

in most of the time there exists a bigger problem which defines the boundary between the game

and the engine, it is the target game genre. This carries us over the second question which is the

main topic of it. Currently there are many different game engines available in the market that try

to be genre-independent however it is also a fact that in reality many AAA game studios design

their engines in specific to their target game genre. They even design different engines, sharing

the same methodologies and technical aspects but differ in architecture, in order to be used in the

development of games with varying genres. So we can conclusively say that the second question

has a varying answer, because it can be the case where the engine is extensively modified for a

new genre, or it can be the case where a completely new engine is designed that is genre specific.

For the third question, we can say it is less discussed because it is the most obvious one amongst

them all. Low-level issues have a huge impact on the general outline of an engine’s architecture,

7

Lina Engine Final Report

because evolving technology pushes developers to think about constantly changing new low-level

designs. Even though a good architecture would be affected less by the changes occuring in the

low level systems, it is still pretty clear that eventually a modification would be needed on the top

levels as the low-levels alter. For example, in the decade of 2000’, most hardware only supported

fixed-function pipeline for rendering, so the developers designed their high level architecture

assuming that fixed-function pipeline would be commonly used for a long time. As the last years

of 2000’s, hardwares started to support programmable shaders and that changed a lot. In order to

cope with the new technology and compete in the market, most developers had to alter their

low-level rendering pipeline, thus altering the high-level elements in the architecture to

compensate for the changes. For the last question, based on the ideas of Anderson et al. (2008),

we can say that even though there are commonly used principles and methodologies, the design

and implementation strategy of a game is selected purely based on the game’s and users’

requirements, and there is no concrete process that works for multiple scenarios.

As Anderson et al. (2008) stated in their research, the questions mentioned needed to be asked

while designing a game engine. In doing so, we have asked these questions and came up with

particular answers that would draw our line while designing our architecture. For the definition of

a borderline between the engine and the game application, we had decided to not to draw one.

Since Lina Engine is an open-source project, we aim to make it highly community encouraged

and generic, so that there can exists different instances of Lina Engine each with its own

borderline between the game and the engine. Instead of basing the architecture of the engine on

certain assumptions, mostly about game’s genre and requirements, we based the architecture of

the engine on certain principles and methodologies, like open-closed principle widely used in

software development world, or the pimpl idiom for the abstraction of Lina classes. In doing so,

we let different instances of Lina Engine to exists, serving different purposes. This design then

answers the second question automatically, Lina Engine’s core design is not based on particular

game genres, neither it tries to provide a framework to support all kinds of genres. As the answer

for the third question about the impact of low-level design, we can state that Lina Engine’s core

systems does not suffer a lot from modifications that occur in the low-level systems. The design

of Lina Engine allows developers to define various instances of the engine completely focused on

their own requirements instead of writing plugins and trying to feed them into the core of Lina

8

Lina Engine Final Report

architecture. This is possible due to separated architecture and dependency logic achieved via

what we call Package Manager and our gameplay design that is based on pure data driven Entity

Component System. As a result of this, low-level issues would not have too much of an impact

on the core systems, as there exists a pure abstraction between them and user is actually able to

define the limits of this abstraction. Lastly as mentioned earlier, Lina Engine does not follow a

definitive and concrete design principle in the means of game engine architecture design, but

rather it follows a unique design formed through many different ideas existing in academic

researches and proven concepts based on well-known material. Along with those ideas, it follows

concrete programming principles to achieve the safety and security of the design basis

implemented.

2.2 Evolution and Evaluation of the Model-View-Controller

Architecture in Games

One of the commonly used game engine architectural patterns for the separation of the gameplay

code from the engine code is Model-View-Controller (MVC). Upon conducting an investigation

based on the concepts of five different game entity and object models, Olsson, Toll, Wingkvist &

Ericsson (2015) finds that the evolution of game architectures differ in quality and in order to

increase the software quality drastically one needs to carry out the task of architectural

refactoring. In addition to the general statement from the Olsson et al. (2015), he also states that,

hardware and software technologies for the game development evolve rapidly and the market

demands new technologies to be implemented in games. Thus refactoring the architecture and

code of the game engines becomes a must. In addition to this, if the game code and the engine

code are highly co-dependent, the transition to a newer technology becomes more difficult. For

comparison, Olsson et al. (2015) develops five previously developed games, by implementing the

same games with the MVC architectural pattern which raises important question; is there a

difference in quality between implementation? For the quality model, Olsson (2015) defined five

goals. These goals are:

1. The model should provide easy allocation for the developers according to their expertise,

for example rendering expert should work mostly on view components.

9

Lina Engine Final Report

2. Developers should be able to work on several projects in a seamless way.

3. Games should be portable to different platforms.

4. The services like rendering used should be able to change and evolve with minimal

impact on the game itself.

5. The implementation of the new features should be rapid and developers should be able to

try to implement their new design or gameplay ideas quickly.

So in short, according to the Olsson et al. (2015), there should be minimal code duplication and

the user interface should not be affected by the changes of the subsystems such as rendering,

input or physics.

In comparison with the discussed MVC based architecture, Lina Engine does not implement an

MVC based architecture. However, instead its architecture is designed in a way that the definition

of quality and the goals are quite similar. While designing the architecture for Lina, we had tried

to base our quality measurements based on the quality goal definitions of MVC. The API and

subsystem abstraction existing in Lina Engine abides by the first quality role to provide easy

allocation for the developers as well as the open-source users. In order to comply with the second

rule of being able to work seamlessly on various projects, Lina Engine implements a build

system, specifically supported by Premake and CMake build systems. In our design we had

definitely considered the portability of the games to different platforms, which is the third goal.

However even though the architecture of Lina Engine does not prevent any kind of

cross-platform compilation, cross-platform development is not a priority in the roadmap, as it will

most likely be handled with the build system designed in the future. The fourth quality goal was

the services existing in the engine being able to evolve with minimal or no impact on the games

developed. Lina Engine follows this rule thoroughly and it uses strong programming paradigms

like static polymorphism over dynamic one, in order to implement its abstraction system for the

high-level components and game code. The last quality goal, implementation of new features and

prototyping being rapid and easy, is the goal that starts to differentiate the paths between Lina

Engine and suggested model by Olsson et al. (2015). Aparting from widely used engines that are

10

Lina Engine Final Report

easy to use and specifically developed for fast prototyping, Lina Engine does not aim to give

users the ability to implement everything in a quick and easy way. Because designing the engine

this way would increase the coupling between high-level systems and low-level frameworks, as

well as the game code, which destroys many other features we want to achieve for Lina. This

does not mean that the engine would be hard to use, but rather we can say it does not try too hard

to be usable by everybody. Of course Lina provides a lot of ease to the users, however it is still

expected from the user to put in a little more extra effort when compared with other engines in

order to achieve system abstractions, varying engine instances and many more features that

makes it much more easy to come up with highly optimized game systems.

2.3 An Object-Oriented Graphics Engine

Gingko (Qiu and Chen, 2008), an object-oriented graphics engine, developed by Hang Quiu and

Lei-Ting Chen in University of Electronic Science and Technology of China, has several features

that are aimed at solving design flaws existing in modern rendering engines. Whilst Lina

Engine’s main purpose is to provide an architecture aimed at solving design flaws existing in

modern engines, Gingko is a great product to base ideas upon in the rendering systems for Lina.

Gingko focuses on encapsulation and extension layers to provide rendering functionality, while

maintaining an easy to use API for the users. The abstraction and system communication systems

that Qiu and Chen has achieved with Gingko allows them to provide efficient and fast rendering,

while also having an easy to extend architecture that is hard to exploit. The combination of these

features are generally very tricky to implement, as most of the user requirements conflict with

each other. When developers are focused on providing efficient and fast operations, they usually

have to give up some features that build up easy of use and modularity. This paradigm also occurs

vice versa, the more abstracted and virtual a system is, the less efficient it becomes due to

propagated function calls and delegations. However, this is not the case for Gingko. They mostly

achieve their unique architecture with supervision systems they have built. In Gingko, there exists

rendering and scene supervision systems that acts as an extra validation layer for rendering

operations, thus they are able to collect information about bugs, deficits or user problems into this

layer, as well as supervise rendering operations and leave no room for exceptions. This way,

when new rendering operations are implemented, it becomes easier to cover the possible issues

11

Lina Engine Final Report

that they might bring as well as validate inputs coming from the user in a centralized system.

Instead of making the rendering system pure state and data driven which is efficient, or making it

purely based on object-oriented patterns which is modular, extendible but lacks performance,

they combine these techniques together. The actual operations are done with data and state driven

logic, meanwhile an object-oriented layer is built on top of the rendering engine to provide

modularity and ease of use, as well as extendibility.

Rendering engine existing in Lina Engine influences from this supervision system to handle

scene and entity rendering logic, thus providing a better underlying basis to solve graphics related

problems existing in modern engines. Lina Engine already implements a pure data-driven Entity

Component System to handle entity interactions and serializations, which makes it pretty viable

to implement the rendering systems in a data-driven way as well. However using a data-driven

way means that it would be hard to achieve the singularity and modularity of systems that

decreases the coupling between them. In order to overcome this, a similar scene supervision

system is used in the highest layers existing in Lina that provides modularity, meanwhile the

middle and low layers still act as purely data driven, achieving efficiency.

2.4 The Entity System Architecture and Its Application in an

Undergraduate Game Development Studio

Gestwicki (2012) presents the idea of Entity Component System to handle entity architecture in a

game or an engine. Entities are the main building blocks of a game, as they are the elements or

objects existing in the game and building up user interaction. Creating a solid entity architecture

is a crucial part of designing a game engine, as it is the main building block that would impact the

design decisions of other parts of the engine.

As mentioned by Gestwicki (2012) the most commonly used design pattern for entity systems is

the traditional object-oriented entity system. In this approach, entities are objects that hold a list

of components. Meanwhile components are object classes that have data declarations along with

operations on them. Entities with a has-a relationship to this components, or even more

traditionally the ones with is-a relationship to them, can then use the operations existing on these

components to derive their own functionality. This approach has a great ease of use, but

12

Lina Engine Final Report

introduces many complexities and problems as the number of entities increase. Gestwicki (2012)

talks about the data-driven Entity Component System that is the solution to these problems and

approaches the entity system in a completely different view.

Gestwicki (2012) mentions that Entity Component System (ECS) is an alternative architecture to

handle game entities and their behaviours. Rather than using object oriented approach, we use a

delegation based architecture in ECS. In ECS, a game entity, does not inherit or perform the

behaviour of a component. But rather, an entity is nothing but a collection of components. It is

only a logic object in the game world, that holds components, but do not perform any operations

that are designated for those components. The behaviour of entities are strictly defined by the

components that they aggregate. In other words, rather than inheriting behaviours, the delegations

to cohesive components are used. The components in ECS are purely nothing but raw data. They

are the collection of attributes and their states, and they do not include or perform any operations,

but only keep the information necessary to perform operations. When we look at ECS for now,

we have components, which do not have any behaviour but only raw data, and entities that are the

collections of those components. The behaviour is performed as follows. The systems in ECS

comes into play. There are various systems operating over various components, mostly with

efficient rules of iteration. All the behaviour logic is implemented within systems, and systems

use the information on the components and apply the corresponding behaviours to the entities that

are paired with those components. In this process, systems do not hold any references to entities

or components. They discover entities by using managers that manage the queries of the

components. This way, in order to alter or fix behaviours, we only need to find

system-component pairs, so the problem of increasing complexity in handling entities would be

removed, as they only collect components, not cast their behaviours.

In ECS, there occurs a procedural design, in which the components are nothing but data transfer

objects. In other words, as mentioned above, components do not carry any behaviour, and the

implementation of behaviours are isolated from the systems. This way, we can create various

modules to implement any kind of system in the way that we want.

ECS provides high amount of modularity, along with a solid and high performance. Due to

entities not being the center of implementation, if we can perform efficient implementation of

13

Lina Engine Final Report

behaviours in the systems, it is possible to manage millions of entities with a constant frame-rate

throughout countless frames. Millions of entities, that are rendered and perform operations,

would be almost impossible to process with a constant performance using other approaches.

In Lina Engine, we completely follow this ECS principle in order to handle entity architecture.

This gives Lina the capability to utilize all the features and advantages of ECS that we

mentioned. Moreover, the fact that Lina uses a pure ECS approach in its core systems means that

not only the game code can benefit from the ECS logic, but the actual systems like render

systems, scene graphs and physics systems can also use an ECS based logic in order to handle

data and operations. Since all the entities existing in any particular game instance created with

Lina would use this ECS system, it would be amazingly easy and fast to transfer entity data

throughout the core systems of Lina engine to handle runtime gameplay operations.

2.5 Designing a PC Game Engine

Bishop, Eberly, Whitted, Finch, & Shantz (1998) talks about an important design goal to care

about while designing a game engine architecture. In their paper, it is highlighted that a game

engine should focus on the importance of providing a public API to the end-users, in order to

make the engine and the games developed with it more customizable and unique. No matter how

important efficiency and fast low-level operations are, a game engine should be designed in a

such way that it needs to provide a public layer on top of the low and high levels in the engine in

order to make it possible for users to interact with the engine as much as possible. Implementing

an API provides this, at the cost of efficiency mostly due to dynamic polymorphism. This makes

it possible for users to use the full features of the engine and create unique content. Bishop et al.

(1998) mention that a more moderate approach was taken while designing their engine, to

provide a common API to the systems & items existing in the engine with proper optimizations

under the hood. This common API works along with the object-oriented structure of the engine,

making it easier to achieve modularity. Bishop et al. (1998) also mention the possibility of

dispensing the API and providing a generic game executable, however this would limit the

possibility of interaction between the user and the engine. Hence, this would result in games

generally looking like each other, unless the engine developers provide an extensive

14

Lina Engine Final Report

customization to the executable in the means of extensions and plugins, which is a cost at

manpower and maintenance.

Bishop et al. (1998) talk about a unique scene graph system that is implemented. It is mentioned

that their design of a scene graph does not differ from traditional graphs in the meaning of

structure, but rather it implements a unique traversal order to iterate through the objects to be

drawn in a particular scene. This mentioned scene graph has a way of indexing particular nodes

and their children, anywhere in the whole graph tree and keeping a record of particular segments

of nodes inside the graph. When a composite node in the graph needs an update, the update is not

given to the whole scene graph, as in oppose to traditional approaches, but rather delegated to the

particular segment, that propagates the redraw order down the tree only for the relevant leaf

nodes. This provides a significant optimization for an object-oriented based structure to handle

render device operations. Bishop et al. (1998) mention more about the technical details provided

to handle the graph’s implementation, however various programming paradigms and techniques

have been developed over the course of past 20 years that makes most of those techniques

obsolete. Although, the unique model of the design solution still stays viable.

Lina Engine implements the idea of providing a common API to the users and follows the main

principle mentioned by Bishop et al. (1998). It has a common API to be used by the clients of

Lina Engine. One point in which Lina starts to differ from the idea of API design of Bishop et al.

(1998) is that in addition to this API, there is also a mechanism provided along with the API in

order to bypass the general interface and directly access the low-level functionality. This creates a

unique structure, in which the user is able to use Lina features extensively and easily through the

API but also has the possibility to directly access low-level layers like media management, input,

audio and rendering. By accessing these frameworks user can customize their game even more

and the possibility of creating unique game graphics and feelings increases. One downside to this

approach is the fact that it is also a maintenance nightmare for us the developers. In simpler terms

to describe the complexity we can say that the process of achieving this is like a tangled web. We

need to manage the low-level structure in a way that it is decoupled with the main systems.

However, it also needs to be coupled with the API system, which unfortunately works by

delegation on top of the main systems. Handling this kind of a system of systems is hard to

achieve, and too much of an overhead in runtime. To fix this issue, we plan to implement static

15

Lina Engine Final Report

polymorphism that defines the instances of low-level classes in the build time, before the

compilation time. This way, references to these instances would not have to get coupled with the

API in the compile time, as they would already be referenced while building the engine. Of

course, this means an additional build process that needs to be way too generic, and includes

multiple steps of operations defined in various executables in order to link the engine library to a

game executable. This would decrease the user friendliness, however the achieved structure

would be unique and pretty efficient to use.

In oppose to the unique model for the scene graph given by Bishop et al. (1998), Lina Engine

does not use this structure. The main for this is the fact that structure is based on the composition

design pattern in object-oriented programming approach. As compared to the mentioned scene

graph and other traditional scene graph systems, the object-oriented high-level structure of an

engine is adapted into the state machine based rendering frameworks, like OpenGL. There occurs

many problems in this context, and the mentioned scene graph is an example of a unique solution

that solves one of these problems. However in Lina Engine, the core entity architecture is built

upon Entity Component System. Since entity architecture is a crucial design point and has an

impact on the design decisions of other systems, we are highly tend to implement a data-driven

rendering engine in opposed to an object-oriented traditional one. With a cost of a little overhead,

we provide an object-oriented API layer on top of this engine to achieve modularity and ease of

use. However the fact that underlying systems works parallel with ECS’s logic is a huge

advantage for us to achieve a fast communication between entities and high-level systems

without any kind of virtual delegation. Due to these reasons, Lina Engine differs from the idea of

implementing an object-oriented render logic that implements this scene graph. Instead, Lina

would have a basic scene graph implementation that can work along with the ECS logic, which

would be pretty enough to achieve the performance goals, since ECS would remove much of the

overhead by entities.

2.6 Distributed Scene Graph to Enable Thousands of Interacting Users in

a Virtual Environment

Lake, Bowman & Liue (2010) talk about the idea of a scene graph that can handle thousands of

real-time interacting player avatars in a virtual environment. What is called as a virtual

16

Lina Engine Final Report

environment is a virtual world that enables people from all over to world to play an avatar

simultaneously, interacting with each other and modifying the virtual world with their own

creations as they play. As can be guessed, this kind of a virtual system or a game requires a lot of

processing power in the means of rendering, thus it requires a really well optimized render system

in order to handle all the avatars. Lake et al. (2010) find out that the main barrier to the

optimization of such a scene graph is not the storage or communication or other elements, but it is

the actors. The main entities that represent each online player are meant as actors. They mention

regardless of the capacity of the central server, there will be some point where the system will be

fully loaded and the user experience would be diminished, due to the actor load. In order to solve

this problem, two main approaches are generally used; sharding and spatial partitioning. Sharding

is the process of creating the copies of the same virtual space on different servers to segregate

users into various copies. But with this process, load balancing and quality becomes a problem so

that there again has to be some kind of a limitation to the players that try to connect to the game

at the same time in order to manage shards, the copies. The other approach is using spatial

partitioning, which is the process of divining the virtual space across multiple servers and letting

each server deal with the load of a smaller space. But with approach, there is a need for a system

that implements communications and player transfer between servers as the players change three

dimensional locations throughout the game.

Lake et al. (2010) propose a new architecture which they call Distributed Scene Graph (DSG). It

is basically a scene graph system that implements spatial partitioning to handle entity data

propagation, instead of spatially partitioning the servers each with a normal scene graph. Instead

of using a central server to handle the simulation work, DSG delegates it down to the actors

around the scene graph. This allows a general purpose environment that is easily scalable only

with a cost of additional hardware. DSG works in a way such that there does not exists a game

scene with a centralized logic that has to do object-oriented based singular iteration to simulate

the space. Instead of that, the scene is a hub of information that connects the actors together. Now

the scene would be seperated from the actors and it can freely focus on only data management,

just like the Systems in data-driven Entity Component System.

The model presented by Lake et al. (2010) has many similarities with the scene graph that is

implemented in Lina Engine. Lina Engine’s scene graph logic differs from traditional

17

Lina Engine Final Report

object-oriented graphs in a way that it only care abouts the data, and acts as a system existing in

the general Entity Component System hierarchy. The actors in the game scene acts as a collection

of data, called components, and in the case of a scene graph this collection of data is a group of

drawing and transformation parameters. The scene graph works in a spatially divided way, with

multiple regions each representing a particular type of draw operation. Actors that have the same

procedure of drawing would be clustered together to form a group to be processed by the scene

graph. Lina Engine’s scene graph logic is highly inspired by the idea of combining spatial

partitioning and region usage for load balancing used in the DSG system created by Lake et al.

(2010).

3. Methodology

3.1 Problem Extraction

Initially, a wide research was carried on the game engines and their architectures. This research

has begin from early high level frameworks like OGRE, 3D Studio and Torque3D. We had

examined several game and graphics engines that are available as open source, and extracted their

architecture to inspect. However, in order to find out deficits in the architectures, it was mostly

needed to have prior knowledge about the issues that these applications might derive in real life

applications. By using our previous experience, along with a research about the obstacles that

developers faced amongst the community, it was possible to start establishing connections

between the problems and the architectures extracted. Hence, it was possible to see what kind of

design restrictions were the cause of issues that occur while using these engines.

We have continued our research in the same way, but for the modern game engines that are

currently popular in the market. Just like we did with the early frameworks, we have inspected

these modern engines and examined their designs and architecture.Thus, we would have a basis

of understanding about their methods, from an outsider perspective. This information was

valuable as a resource to use while working on identifying these engines’ problems, as well as

differencing between real problems existing in these engines versus soft issues that were

consciously not fixed and left for a later date.

18

Lina Engine Final Report

After the identification of problems existing in early works and methodologies used in modern

engines to overcome these issues, it was possible to start extracting architectures of the modern

engines and marking out their deficits so that we can establish a basis for solutions. Extracting

architectures and inspecting the design of the modern engines like Unity 3D, Unreal Engine,

Godot and CryEngine was significantly simpler than doing the same for early engines. This is due

to the fact that we as developers had extensive experience on these modern engines, and there are

a lot of open source content available online for these engines. Even the source codes of these

engines, except Unity 3D, is available as an open source community work. Along with our

experience in game development and knowledge about real life applications of these engines, we

were able to repeat the process of identifying issues lying underneath the systems within them.

Mostly, problems related with heavyweight libraries, event and communication systems, decay of

object oriented structures due to overuse and representation of game entities showed up as the

most significant issues. It was relatively easy to overcome most of these issues, but the business

driven development techniques of the developers of these engines prevented them from working

on and overcoming them. Since we were able to mark out problems, and connect them to their

architecture design, due to not having an idea of market competence, it was possible for us to

alter these architectures and provide solutions to the problems.

3.2 Narrowing Issues

Completing our research about early and modern works of engines has resulted with list of many

deficits, design flaws and problems occuring in the development process of real world

applications. However, it was not possible to address every single issue we had discovered, as it

is not realistically possible to provide a software solution or design that works for all. It was

mandatory to cross out elements from the list and eliminate issues that were not related to the

main architectural flaws. After that, it was possible to design an architecture that focuses on

solving the most significant issues.

Upon inspecting a software solution that is as complicated as a game engine, no matter how many

professional developers work on the software, it is highly possible to find out bugs, missing

features, incompleted implementations and many other issues that can be considered as problems.

However, solving these individual issues that are mostly related to the development cycles were

19

Lina Engine Final Report

not our goal. Our goal was to find the core reasons for the flaws, mainly in the high level systems

existing in those engines. Thus, we initially divided the issues we had found into 4 categories:

● Architectural Limitations

● Known System Issues

● Incomplete Features

● Minimal Bugs

Minimal bugs were the type of issues that the developers using the engine face daily, and they are

usually fixed in a short amount of time with patch updates. They were mostly Editor related

issues. A window causing editor shutdown upon a sequence of actions, serialization problems

like exceptions in file reading and writing across different operating systems, physics bugs upon

combination of particular entity actions can be counted as examples of these bugs.

Incomplete features were mostly caused due to the market competence between these engines.

When one of them introduces a feature like GPU instancing in particle systems, the other engines

rush into implementing this feature even though it is not in their roadmap or is due for later. This

quick implementation results in a feature being released in the next version of the engine, but

lacking extended functionality and including a lot of other bugs.

Problems we had put into the known system issues category had importance for our design cause

this category was the one where we had started to draw the line. Known system issues are

problems that cause inefficiency in messaging between game and high level engine systems or

introduce complexity and complications by object oriented approach of entity design as the

projects get larger. These problems were the ones we definitely wanted to address.

Lastly, architectural limitation category included the biggest issues we aimed to solve. Low speed

communication within engine systems, lack of ability to alter the libraries and dependencies of

these engines were examples of these issues. These kind of problems were mostly caused by

design flaws inside the architecture of those engines and they are very hard to solve without

substituting the core systems existing in engine systems.

20

Lina Engine Final Report

After narrowing down the issues we aimed to work on, it was possible for us to design an

architecture that focuses on removing them and minimizing the flaws that might cause possible

problems in the feature.

3.3 Designing the Architecture

Identifying problems, differentiating between the actual reasons and development cycle based

causes for them was a significant and crucial step we had to take. Afterwards, finally narrowing

down the problems and extracting the ones that were most crucial was the hardest part of

designing our project. After successfully completing these steps, it was fairly easy to do the

design, because we had a clear list of issues we wanted to address and proven methodologies that

can be used to solve them.

Initially we had thought each major high level system individually, and designed the relationships

between the subsystems within them. This way, we would take modularity principles as the lead

for the rest of our architecture. Engines existing in the market compete to have the biggest

audience, so that the most importing design outcome they focus on is achieving ease of use. This

results in systems that are possible to exploit, for the sake of having a large amount of people that

are easily able to use those engines. Due to the open source nature of Lina Engine, we do not

have any business and audience driven considerations. Hence, we have designed our architecture

in a way that is purely solution focused. This way, we were able to come up with systems, that

would not have as much ease of use as the engines on the market, but in exchange have solid

system structures that were hard to exploit and carry out deficits in the feature.

We have developed several techniques for within engine communication, using our research on

game engine architectures, other studies conducted to develop alternative structures, as well as a

wide research for the application of various software design patterns. As a result of these

suggested techniques, we were able to connect our individual systems within the game engine

architecture, by addressing to our biggest goal, which is to achieve lightweight structure.

As another important step, we had designed our data structure for entity representation, using a

hybrid approach between delegation based Entity Component System (ECS) and object oriented

data communication to achieve a high speed, easy to debug entity system within our core

21

Lina Engine Final Report

architecture. Even though most of the engines have plugins and extensions for ECS, there still

occurs performance and efficiency related issues while using those plugins because their within

engine architecture is based on traditional inheritance based entity representations. We had

removed this flaw, by making our engine base on ECS, meaning that even the internal entity

relationships between the engine systems would benefit from delegating object and component

behaviours into main systems that are responsible for them. This way, using ECS for the game

client would not result in incompatible code structures, and we would achieve the efficiency we

aimed for the game client code.

In Figure 1, the overview of the architecture we have designed for Lina Engine can be seen. This

design suggests us that Lina Engine would be highly modifiable, does not enforce any additional

low level frameworks to the users that they do not want to use and implicitly works on ECS

systems. After coming up with our design, it was possible for us to start testing possible scenarios

on the paper to see if we have achieved what we had aimed for. After finalization, we would be

ready to start implementing this design and take initiative on the open source community as a

game engine that is specifically developed to solve significant problems.

3.4 Technical Details
During the implementation of our design for Lina Engine, there had to be number of technical

choices we needed to make. These decisions revolve around many different subjects like build

22

Lina Engine Final Report

systems, build toolchains, C++ features, compilation and linking, memory and cpu layouts, cache

optimization, hardware buffers, high-level and low-level engine communication and many more.

Some of the choices we made are common in most C++ applications, however there are

particular combinations of techniques we have used in order to ensure that there will be a pipeline

for Lina Engine that is ready to be scaled into an industry level game engine. This section will be

highlighting the most important features that we have processed and implemented in Lina Engine

in the means of technical details.

3.4.1 Static and Dynamic Library

Application wise, Lina Engine is basically a framework, compiled into a library to be used by

executable projects. That is one of the nature aspects of game engines, as they are simply libraries

that can provide extensive features to develop a game. Widely speaking, there are two ways we

can use to build a library. We can either build Lina as a static library, or as a dynamic library.

There are pros and cons for both of these choices, along with application cases where both of

them can be used. We will shortly discuss the differences between these choices and reason

which one of these techniques Lina Engine uses as well as why.

Static libraries are mostly based on compilation time dependencies. They are usually bigger in

size, as they include all the value evaluations for a program that can easily be fetched by any

executable using it. They are mostly more secure than dynamic libraries, as it is usually harder to

decrypt. Nevertheless, this is not an important feature for Lina Engine as it is completely free and

open-source. One thing about static libraries that is important is the fact that they are locked into

the program using it at the compile time, which requires a recompilation if any changes are made.

Even though the recompilation fact is a downside, this compile time dependency usually ensures

a better compiler and cpu architecture optimization in most platforms, and results in a faster

running executable.

Dynamic libraries on the other hand work differently, as they are dynamically linked into the

programs using them at real time. They usually work along with a static library, which is

basically the installation of the program, and they provide prototypes and hooks for executables

to be used at runtime. Dynamic libraries can be shared between many programs using it at the

same time, without creating a copy of the library. This makes dynamic libraries extremely

23

Lina Engine Final Report

memory efficient, when compared with static libraries. However, this efficiency is only important

in the case where the same library is used by many different programs at the same time, and this

is not the case for Lina Engine for now. Theoretically, there would only be a single executable

game that is using the Lina Engine. Only one possible case where Lina Engine can be used by

multiple programs is using an editor for Lina Engine and also running the game executable at the

same time, as they are basically two executables serving different purposes. However, this is not

the case for the initial versions of Lina Engine so we do not have to worry about it for now.

Lina Engine currently is build as a static library, as it makes it easier to distribute, more secure

and more optimized. Moreover, using a static library ensures that there is minimal amount of risk

in the means of our memory manager being robust in various platforms, due to the fact that

library is compiled with the same compilation settings and flags with the executable that will be

using it. However, there can also be cases where a dynamic library build can be necessary.

Especially development wise, it is much faster to compile a dynamic library code than a static

library code, so it is much faster and easier to handle the development cycle of a dynamic library.

Moreover, as mentioned there can be cases where we would like to distribute render engine,

physics engine and the core engine as different dynamic libraries, to be used by various editors

made for Lina Engine. For these reasons, we also support dynamic library compilation in Lina

Engine. By default it is compiled as a static one, but we also have written an API export feature

where all the necessary functions and definitions can be exported outside of Lina Engine, which

makes it possible to compile Lina as a dynamic library. So, in short, Lina Engine is build as a

static library but also supports dynamic library compilation for scalability, which we hope to be

using in the further releases of this project.

3.4.2 Vendor Compilation

Lina Engine uses various open-source frameworks and libraries like glfw, OpenGL, glad and

Assimp. These frameworks mostly support different compilation features, as they can be used as

a static library or a dynamic library at the same time. There are two main ways to use external

dependencies like these vendors; compiling them along with the Lina Engine source, or

compiling them separately into libraries and using them from inside Lina Engine source.

24

Lina Engine Final Report

The former is usually more safer platform wise, as it makes sure that these libraries will be built

using the settings of the platform that the source code is currently being compiled on. If you are

compiling Lina Engine on Windows and using the former approach, these libraries will be

compiled accordingly to Windows requirements, in the means of extensions, compilation flags

and target architecture. If we are to switch the platform to Linux, again, the libraries will be

compiled accordingly to Linux and the C++ compiler version running on the machine. However,

one downside is that this approach is not very user friendly. Once a user builds source files and

generates project files for Lina Engine, they will be seeing all these libraries and their relative

project files, which can easily extend over 10 different projects for a single library, while

developing with Lina Engine. It makes it error prone and confusing, as user would have to deal

with compiling these libraries manually themselves.

The latter approach is more user friendly, as no project and extra meta files are included for

vendors while compiling Lina Engine from source. In this approach, as the developers we are

required to compile these libraries, for different platforms and cpu architectures, as well as

different C++ compilers separately. After doing so, we are required to distribute these binaries

and explain to the users that they are needed to pick the right version of our distribution

depending on their operating system, target cpu architecture and compiler model, as well as the

version. This is more of a hard work for us the developers, but it makes it so much easier for

end-users since all the building and compilation of vendors would be done by us. Lina Engine

currently uses this approach, and in the current stage we are only distributing the vendor libraries

for x64 and x86 architectures on Windows machines, build with GCC and Clang compilers.

3.4.3 Build System - CMake

While developing an open source project like a game engine, there definitely is a need for a build

system and toolchain architecture. Otherwise, it would almost be impossible to distribute the

sources that can be executable on each platform, as they are many different combinations of

operating systems, target architectures and compiler features. In order to avoid this impossibility,

build systems like Make and CMake are extensively used by community. By using CMake in

Lina Engine, as developers we are able to define how the engine project files should be

generated, which compilation flags are needed on different operating systems and architectures,

25

Lina Engine Final Report

what kind of libraries are needed to be built and how the directory management, along with file

management needs to be handled. We define this by writing different CMake scripts, and

requiring users to use CMake which reads these scripts and handles rule management

accordingly, in order to generate & compile our source code. This way, no matter which platform,

architecture or compiler a user has, we can define universal rules using CMake, and it handles the

platform specific build system and toolchain management for us.

3.4.4 Lina Build Launcher

Using CMake, as an end-user requires a little bit of knowledge about build systems and CMake

commands on the relative terminal. The users are required to use command line or CMake GUI to

target Lina Engine source code and build directory, as well as to select different project file

generation options we developers define that shapes the Lina Engine source for the desires of the

user. Even though learning to use CMake is pretty trivial and easy, we wanted to provide an

easier way to use Lina Engine for our end-users. That’s why we have developed Lina Build

Launcher using JavaFX, for Windows, Mac and Linux.

Lina Engine Build Launcher is a user friendly tool which makes it really easy for users to define

the source directories of Lina Engine as well as where they would like to build the source project

26

Lina Engine Final Report

files. Users can choose various generators for their project files along with many different build

options using an user-friendly interface.

3.4.5 C++ 17 Features

Lina Engine makes extensive use of C++ 14 and 17 features. In most systems implemented, like

action dispatching systems, event handlers, core engines and entity component systems, Lina

Engine uses various C++ 14 and 17 features to provide scalable, robust and optimized code

architecture.

Smart pointers are extensively used amongst the systems in Lina Engine in order to handle

ownership of object lifetimes. Instead of depending on the raw pointers for ownership, we have

chosen to use unique pointers on the objects that would not be shared, like action dispatchers,

audio and render devices, physics interaction casters and more. This makes sure that any failure

in the destructor call will not cause any memory leaks due to the smart pointer wrappers, as they

handle memory clean-up regardless of how the program can fail.

There are many different collection types used in various systems from memory managers, data

structure managers, entity components systems and dispatchers. All these devices and systems

use hashmaps, arrays, lists and various other data structures. In order to handle proper data

transfer between various function calls within the system without extra object copy on the

memory, or the creation of dangling pointers, we extensively use move semantics and variadic

templates. Usage of move semantics ensures we handle memory blocks efficiently while the

variadic templates in most of the classes ensure compile time type checking and ease of use.

Specially in event handling and action dispatchers, we have used constexpr lambdas, folding

expressions and lambda expressions of C++17. By using lambdas and various macros along with

them, we have created an easy to use API in which the users can easily register callbacks

belonging to any class from any instance of it at runtime. Users also able to pass in arguments

and specify return types for their own methods to be registered as callbacks upon events

occurring within Lina Engine. Thanks to the usage of these features, it was possible to avoid the

overhead of std::function objects in most cases.

27

Lina Engine Final Report

3.4.6 Static Polymorphism in Core Engines

It is no doubt that a game engine framework extensively uses polymorphism to achieve many of

the runtime dynamic functionality. This is especially the case for our requirement to be able to

extend the engine for multiple platforms and low-level frameworks in the future. For example,

Lina Engine currently uses GLFW framework to handle window and context creation, as well as

input handling from the hardware. There exists an Input Engine in order to manage input

handling. If we were to implement Input Engine purely based on GLFW, it would be really hard

to modify the engine to work with SDL, another vendor framework for handling input and media,

since it would require deep changes to the engine implementation. To avoid this, obviously we

needed to use polymorphism on the Input Engine. Idea is to be able to have many different forms

of Input Engine, having the same signature for methods, thus the same API, but implementing

those operations differently, completely based on which low-level framework is used. Easiest

way to achieve this was to implement dynamic polymorphism using inheritance. However,

dynamic polymorphism has an overhead, especially because of what is called vtable lookup. The

program needs to go through a lookup table to search for the desired functions and find which

instance of a child class of our Input Engine is meant to execute that call. Even though this is a

common use case and usually normal to implement, we decided to go a little bit more extreme

and optimize this polymorphic structure. Thus, we had implemented static polymorphism.

Core systems in Lina Engine, like Input Engine, Window, Render Devices and more, implement

static polymorphism to achieve dependency scalability that is suitable with open-closed principle.

We use C++ templates to define super and subclasses, and the types of these templates, meaning

what kind of a low-level framework class actually needs to override the operations is resolved at

compile time. So the program does not have to worry about lookup tables during runtime, as there

are none, all the function calls to the related subclasses will be linked during the compile time.

This makes it harder to develop in most IDEs, as they fail to provide hints and features like

IntelliSense due to templated class types, however it is worth having a bit more optimized

runtime results.

28

Lina Engine Final Report

4. Results and Discussion
Designing and implementing Lina Engine from scratch has been a tough but rewarding work. We

were able to achieve most of our plans when we first designed the architecture. The current

open-source version of Lina Engine actually works as intended and in accordance with our

design. However, there has been couple of changes to our design we made as we have progressed

more in the implementation side of things, mostly due to technical limitations and requirements.

In this section those changes would be explained and reasoned, along with some findings related

to performance comparison in our Entity Component System.

4.1 Design Changes

4.1.1 Message Bus

In theory, our design feature to use a message bus within the engine in order to handle in-engine

communications as well as low-level and high-level game code communications stays the same.

Only difference is that in our design, we had though Message Bus as a central object that would

be outliving other system instances and would be decoupled from everything. However, while

implementing the engine, we had seen that it was totally unnecessary to define and collect

Message Bus operations within a single object as it would introduce unnecessary complexity to

the data transportation. Instead, we had implemented the Message Bus operations as a wide

network, stretching around the whole engine itself. Various systems carry instances of dispatchers

via composition and these dispatchers are used to handle proper communication between various

details of game code as mentioned previously in our design. Moreover, important instances of

systems and devices are feeded into the game code from the engine itself. This structure acts as a

bypasser, as the client game code would not need to use dispatchers and can directly use the

references when needed.

4.1.2 Package Manager Adapters

Instead of implementing various adapters to provide the main functionality of Package Manager

(PAM), we had chosen a more robust approach. Normally, our idea was to integrate low-level

29

Lina Engine Final Report

framework management within the engine at compile time via these previously mentioned

adapters, however we have seen that again this approach brings a lot of unwanted complexity.

First problem was the extensive use of C++ macros in order to define which low-level

frameworks are supposed to be used. All the low-level framework management would depend on

the macros, which makes the general system very error prone.

Another problem was static method initialization. In order to implement our initial design, we

would have to rely on static methods to instantiate the related objects for the chosen low-level

framework settings. Doing so would not have any problems when Lina Engine was built as a

static library. However as mentioned before, it is possible to compile and build Lina Engine as

both static and dynamic library. In the case of dynamic library build, static methods and the

source units that carry their definitions were highly likely to cause problems on different versions

of the dynamic library that is installed on the computer. We would have to give too much of an

attention to our dynamic library distributions to prevent a DLL Hell, which is the situation

created by multiple conflicting DLL files of the same program.

Due to these two main reasons, we had thought about a more safer and robust way that is

completely compile time dependent and has no risk of creating a problem during runtime. We use

type checking and type definitions in order to define which low-level frameworks are to be

compiled and used. Using type definitions, only downside is being have to recompile the engine

source whenever a low-level framework dependency has changed. However this is an expected

and normal behaviour, as changing the whole media framework of the engine would require a

recompilation.

4.2 Important Findings

The biggest finding of implementing Lina Engine is the fact that it is 100 percent logical and

possible to implement a pure Entity Component System (ECS) based entity structure within a

game engine. Most game engines rely on traditional entity-component hierarchy, while providing

a backend for ECS type of structure via plugins. We were mostly curious about the main reasons

behind it and whether it was possible to bypass the traditional structure. We have found out that it

was totally possible to build the whole entity-component hierarchy upon ECS approach and still

30

Lina Engine Final Report

have a great performance results even when the number of entities are pretty small. This means

that it is completely possible to drive an open source game and engine developer community to

contribute into a game engine project, that revolves around new technologies that are coming

along with ECS features.

In our machine with RTX 2070 graphics card installed, we were able to achieve stable 60 frames

per second on a scene with a single skybox, lightsource and 300.000 cube entities, each having 6

faces, 12 edges and 8 vertices. This is another significant finding for us, as we had only

anticipated around 100.000 entities for a stable frame-rate of 60. This proves that it is possible to

implement ECS approaches in the Render Engine as well, as this high frame-rate is achieved via

making the Render Engine suit to the needs of our Entity Component System architecture running

in behind. In practise, this means that we can develop a foundation for an ECS engine that can be

scaled up to the industry standards and still have high performance results. Because even though

Lina Engine lacks many features when compared to the industry level engines, it achieves this

performance levels while running all the necessary subsystems for a game engine. Implementing

more features into these subsystems does not mean we would have a reduced performance.

Enabling many features at the same time of course would result in a lower performance, however

this is a common and expected issue for all real-time graphics applications.

One other important finding is related to our action dispatching and event handling systems.

Traditional event and action dispatchers rely on a pure observer design pattern. Event listeners

can be attached to and detached from event dispatchers. The only job of the dispatchers is to

notify these listeners upon the desired event. The approach has been developed into more

sophisticated manners in various applications by creating a pipeline of dispatchers for specific

events, so that there will not be an overhead on a central event queue. A widget toolkit developed

for C++, called QT, has created a way more clever event dispatching system called Signals and

Slots. Again they use the same design approach, however in a much more flexible manner as

signals (events) can dynamically change their destination paths (slots) and listeners can define

these slots on any object they desire. In Lina Engine, we have created a hybrid event handling

system between the traditional approach and QT approach. We used the flexibility of Signals of

Slots while keeping the stability and robustness of the traditional approach. Again, we have

various dispatchers distributed over different pipelines and they can attach, as well as detach

31

Lina Engine Final Report

listeners for themselves. However, instead of sending an event data completely to a particular

listener, and letting the listener check for the event and see whether they are interested or not, our

system does this check on the dispatchers. The listeners not only tell which events they are

interested in, they also give the information of which specific conditions of that particular event

they are interested in. For example, an object might be interested in window resize event.

Traditionally, whenever the window is resized, an event object would be passed to this listener

object. Then the listener is able to check the current size of the window and decide to do

something or not. In Lina Engine, listeners can specify the data conditions of these events,

meaning that as an example a listener will receive an event callback of window resize event only

if current window resolution is bigger than 1024x768. Otherwise, the fact that a window resize

event has occurred will not be shared with the listener, providing a more optimized way of

sending event data and avoiding unnecessary overhead. We were able to implement this hybir

event handling mechanism and use it together with our ECS systems. When we compared with

the traditional event handling mechanism, we were able to find out that our system does not

introduce any overhead that is more than the traditional one. Our assumption is that it would even

be faster than the traditional mechanism as inner-engine communication increases, however in

order to prove that we would have to implement more features than we had planned and that is

not a case for our initial release. This result means that we still need further tests on our event

handling systems in order to see whether it really outperforms the traditional approach or not,

however we are sure that in the use case of a game demo, it does not introduce any overhead that

is more than the expected.

32

Lina Engine Final Report

4.2 ECS Comparison

We have compared ECS performance with Unity’s ECS and Job System, which are one of the

most advertised new features including .NET 4 support for Unity. In Unity scene, we had

instantiated 100.000 cubes using ECS, and moved them upwards. Scene does not contain any

light source, and the skybox is Unity’s default procedural skybox.

Figure 1 - 100.000 cube entities on Unity Scene

From Figure 1, we can see that at the time of the screenshot the application was running with 4.6

frames per second, 219 ms per frame.

We have built a similar scene using Lina Engine. Only big difference is the cube’s movement

behaviour and the skybox. We had used a cubemap skybox, which should not differ significant

enough to mention from Unity’s default procedural skybox. Other than that, instead of moving

the cubes upwards, we haved moved the cubes in a forest ruth motion, giving them a constant

explosion effect with a particular momentum. This movement is much more CPU heavy as it

calculates random interpolation each frame.

33

Lina Engine Final Report

Figure 2 - 100.000 cube entities on Lina Engine scene

From Figure 2 we can see that the application runs with 22.6 frames per second, with 44.3 ms per

frame. This is much more optimized and faster than Unity’s ECS system, and it was a great

achievement for us.

Both applications were debugged using Nvidia NSight Debugger, with the same debugging

settings. Both were run on the same computer, using Nvidia GTX 970 graphics card with 4

gigabytes of memory.

5. Conclusions

The development journey for the initial version of Lina Engine has taught us about many

significant issues. The first one is the importance of architecture design if the case is to develop a

project as large as a game engine framework. During the first semester, we had iterated over

many different design methodologies and tested various trivial implementations. All these tests

have led us with our final design, that we mostly seen as the final architecture. However, even

though we had run many iterations it was still a really hard work to carry on with the

34

Lina Engine Final Report

implementation that goes alongside the design. From this, we can safely say that most of our time

was spent on designing and no matter how many hours were spent the design was still the biggest

issue we had faced.

One other important thought of us is the fact that lack of domain knowledge is a huge obstacle for

a development process. As the developers of Lina Engine we were previously associated with

game development and plugin development for various game engines. Even though we had been

closely together with game technology and software, it was still a pretty hard work for us to grasp

the concept of game engines and how things work under the hood. We had found out that we had

implemented the same system over more than 10 times, each having a better technical quality.

This was due to the reason that we had lacked previous experience on engine development and

was not aware of the significant techniques used to do so.

For the development of Lina Engine, we have made an extensive literature research, inspected

previously related work, current game engines and their sources. Then according to our findings,

we had designed an architecture over many iterations, to be implemented with various different

techniques. We had compared our implementation techniques and chose the best results according

to many factors ranging from performance to user-friendliness. Our methodology was extensive

and fit for a game engine development, however we had found out that it is possible to improve

this methodology even further. One important thing that can be done was to increase the number

of design and implementation iterations. Due to time limits, we were not able to test various final

architectural designs. We were only able to implement trivially and test our intermediate

architecture designs that has led us to our final design. However, we think that if we were able to

come up with two or more architecture designs that differ in the key concepts of user experience,

and trivially tests those designs, we believe we would have implemented a more user friendly

game engine architecture. Currently, even though Lina Engine offers a vast API for its end-users,

it still lacks many user experience features that would make it a fit for community use. We plan to

improve this side of Lina and implement more features in order to make it possible for use by

larger audience.

35

Lina Engine Final Report

6. References

L. Bishop, D. Eberly, T. Whitted, M. Finch, M.Shantz(1998). “Designing a PC game engine”

IEEE Computer Graphics and Applications (Volume: 18, Issue: 1, Jan/Feb 1998).

M. Doherty. A software architecture for games. University of the Pacific Department of

Computer Science Research and Project Journal, 1(1), 2003.

Munro, J., Boldyreff, C., & Capiluppi, A. (2009). Architectural studies of games engines — The

quake series. 2009 International IEEE Consumer Electronics Society’s Games Innovations

Conference. doi:10.1109/icegic.2009.5293600

“Godot Engine - A look at the GDNative architecture”, as appears on

godotengine.org/article/look-gdnative-architecture, accessed on October 26th, 2018.

“Introduction to Godot development” as appears on

docs.godotengine.org/en/3.0/development/cpp/introduction_to_godot_development.html,

accessed on October 26th, 2018.

“Tombstone Engine” as appears on https://tombstoneengine.com, accessed on October 26th, 2018.

Anderson, E. F., Engel, S., Comninos, P., & McLoughlin, L. (2008). The case for research in

game engine architecture. Proceedings of the 2008 Conference on Future Play Research, Play,

Share - Future Play ’08. doi:10.1145/1496984.1497031

Ollsson, T., Toll, D., Wingkvist, A., & Ericsson, M. (2015). Evolution and Evaluation of the

Model-View-Controller Architecture in Games. 2015 IEEE/ACM 4th International Workshop on

Games and Software Engineering.

H. Qiu and L. Chen, "An Object-Oriented Graphics Engine," 2008 International Conference on

Computer Science and Software Engineering, Hubei, 2008, pp. 1027-1030

Gestwicki, P. (2012). The entity system architecture and its application in an undergraduate

game development studio. Proceedings of the International Conference on the Foundations of

Digital Games - FDG ’12.doi:10.1145/2282338.2282356

36

Lina Engine Final Report

Lake, D., Bowman, M., & Liu, H. (2010). Distributed scene graph to enable thousands of

interacting users in a virtual environment. 2010 9th Annual Workshop on Network and Systems

Support for Games.doi:10.1109/netgames.2010.5679669

Kanode, C. M., & Haddad, H. M. (2009). Software Engineering Challenges in Game

Development. 2009 Sixth International Conference on Information Technology: New

Generations. doi:10.1109/itng.2009.74

“Definition of ES”, as appears on http://entity-systems.wikidot.com/, accessed on December 3rd,

2018.

C. M. Torres-Ferreyros, M. A. Festini-Wendorff and P. N. Shiguihara-Juárez, "Developing a

videogame using unreal engine based on a four stages methodology," 2016 IEEE ANDESCON,

Arequipa, 2016, pp. 1-4.

D. Maggiorini, L. A. Ripamonti, E. Zanon, A. Bujari and C. E. Palazzi, "SMASH: A distributed

game engine architecture," 2016 IEEE Symposium on Computers and Communication (ISCC),

Messina, 2016, pp. 196-201.

INDRAPRASTHA, Aswin; SHINOZAKI, Michihiko. The Investigation on Using Unity3D

Game Engine in Urban Design Study. Journal of ICT Research and Applications, [S.l.], v. 3, n.

1, p. 1-18, Sep. 2013. ISSN 2338-5499. Available at:

<http://journals.itb.ac.id/index.php/jictra/article/view/180>. Date accessed: 06 Jan. 2019.

37

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7836249&isnumber=7836185
http://journals.itb.ac.id/index.php/jictra/article/view/180

